

The Initial PD Prescription

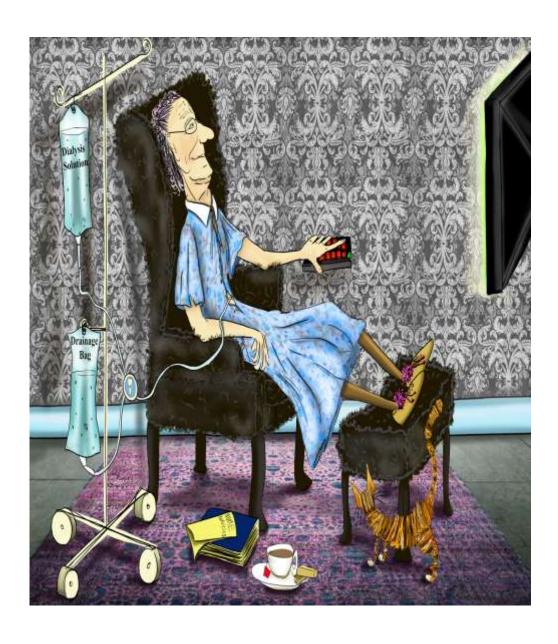
Is 4 bags is the Way to Go?

Lily Mushahar

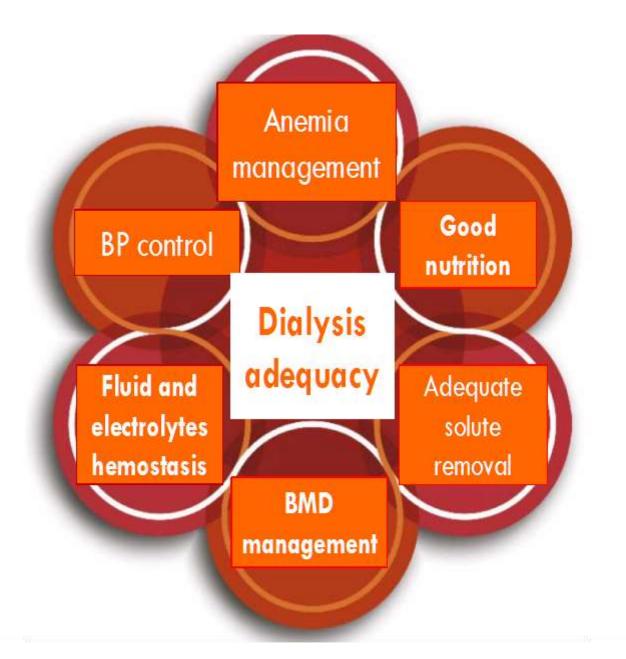
Department of Nephrology

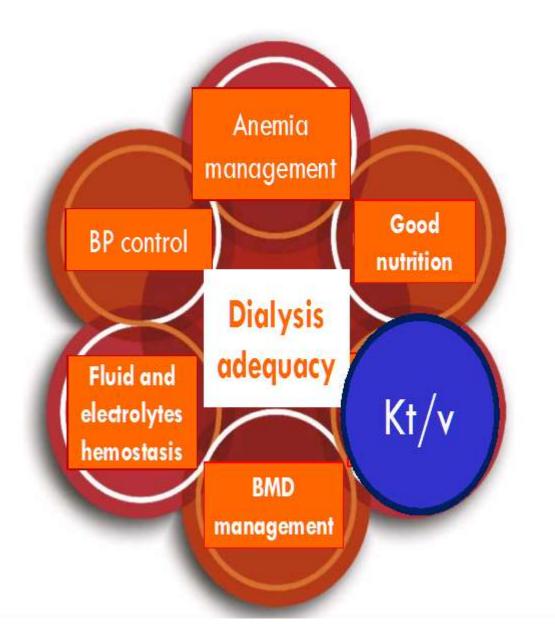
Hospital Tuanku Ja'afar Seremban

MALAYSIA



Outline


- How to plan initial CAPD prescription?
- Incremental vs full dose PD
 - Effect on residual renal function


- Prescribing incremental dialysis
 - Who is a candidate for incremental dialysis
 - How to prescribe incremental dialysis
 - Drawbacks

Initial CAPD prescription

Current Patient Report 20/02/2015 Page 1 of 1 Patient Name: Collection Date: 11/02/2015 Gender: CAPD ID Number: Modality: Birth Date: Age: 1.24 20 BSA (m2): Height (cm): 145.00 Weight (kg): 37.80 Est. Total Body Water (Liters): 22.72 Serum Concentrations: 5.40 Urea (mmol/Liter): 16.40 Glucose (mmol/Liter): 29.00 Creatinine (µmol/Liter): 1219.00 Albumin (g/L): 24 hour Dialysate and Urine Collection: Volume In Volume Out Net Volume (mLs) (mLs) Creatinine (mLs) Urea 7200 8400 1200 Dialysate: 15.40 (mmol/Liter) 941.40 (µmol/Liter) Dialysate: 0.00 (mmol/Liter) Urine: 0 Urine: 0.00 (mmol/Liter) Calculated Values: 0.00 Estimated GFR (mL/min): 1.23 Protein Catobolic Rate (nPCR) (g/kg/day): 1,20 id Removal (L/day): Kt/V Weekly Clearances: Residual Total Dialysate 55.21 55.21 0.00 Urea Clearance (L/week): 2.43 2.43 0.00 Weekly Kt/V: Creatinine Clearance (L/week): 42541 63,30 63.30 0.00 Creatinine Clearance (L/week/1.73m2): PET Results: Overnight Exchange: 11/02/2015 PET Date: 2.50 Dwell Time (mins): 555 % Dextrose 1800 15.40 Volume Infused (mL): Dialysate Urea (mmol/Liter): Volume Drained (mL): 2200 Dialysate Creatinine (µmol/Liter): 941.40 Four Hour Equilibration Test: 5.00 Infusion Time (mins): % Dextrose 2.50 5.00 1800 Drainage Time (mins): Volume Infused (mL): 2150 .ume Drained (ml.): Corrected Data: Creatinine CRT D/P Time Urea Creatinine Glucose (mmol/Liter) (µmol/Liter) (mins) (mmol/Liter) (µmol/Liter) Serum 120.00 16.40 1219.00 5.40 1214.43 Sample #1 Dialysate 72.20 69.89 0.06 Sample #1 0.00 2.20 131.00 225.85 0.10 62.80 120.00 5.00 279.00 Sample #2 470.54 0.39 10.90 522.00 60.80 Sample #3 240.00 Other Parameters: Membrane Transport Type: Fluid Absorption (mL/min): 2.30

295.48

0.846355000

Residual Dialysate Volume (mLs):

Creatinine Correction Factor:

Ultrafiltration

Membrane transport

RRF

Optimizing peritoneal dialysis dose

Increase dialysis dose by increasing drain volumes

Number of exchange frequency

Schedule dwell times to maximise clearance

Target urea clearance = drain volume x D x 7 disbtn volume P

- 1. Volumes
- 2. Body weight
- 3. Schedule

Problems arise for large body weights

Points to consider in planning CAPD prescription

- Amount of dialysis dose
- Volume of fluid instillation

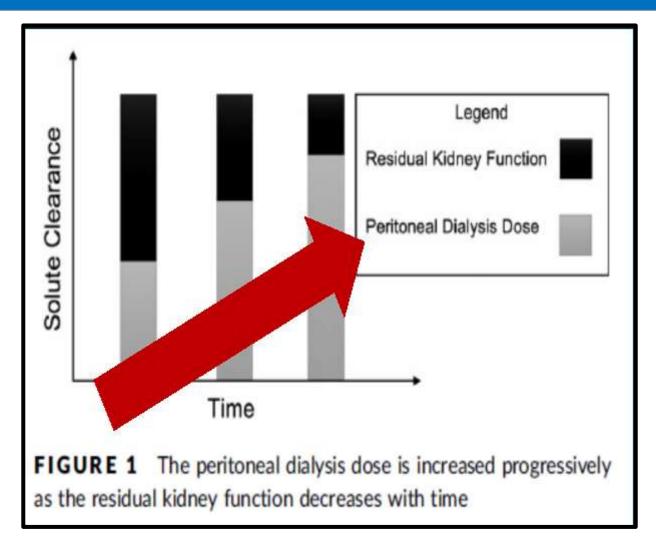
- How many PD exchanges
- Dwell time

Dialysis dose...the more the better?

More frequent PD or HD did not improve clinical outcomes

 More frequent and lengthy dialysis may even accelerate RRF decline

Daurgidas et al, Kidney Int 2013;83:949-958



Initial CAPD prescription

hags exchanges is the Way to Go

..... incremental PD should be considered as initial PD prescription

Concept of Incremental Dialysis

Incremental PD

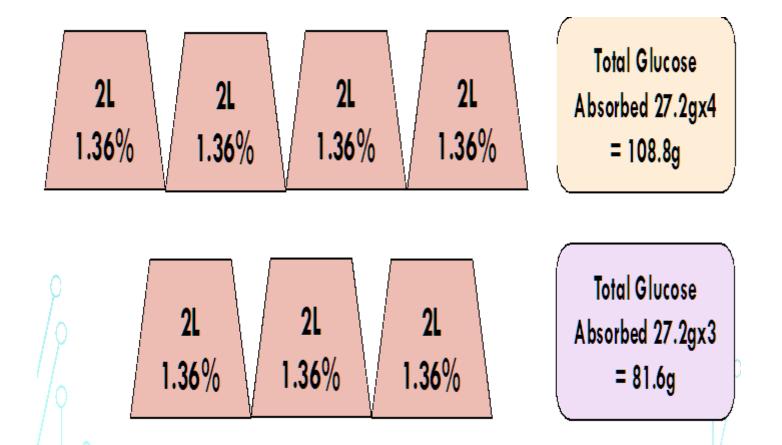
Practice of starting PD at a lower dose that is typically prescribed for someone with residual renal function

Total solute clearance =

Peritoneal/Dialysis clearance + Residual Renal Clearance

Benefits of Incremental PD

- Less onerous with less frequent exchanges
- Result of greater simplicity and less workload for the patient and caregiver
- Excellent opportunity to provide patients with an *initial small dose of dialysis* while continually addressing patient fears and misconceptions


Benefits of Incremental PD (2)

Less costly than standard 4 PD exchanges

CAPD with 3 dwells cost 25% less than 4 PD exchanges

Benefits of Incremental PD (3)

Less exposure of peritoneal membrane to glucose, GDPS and systemic glucose absorption

Incremental peritoneal dialysis: Effects on the choice of dialysis modality, residual renal function and adequacy

G Viglino¹, L Neri¹ and S Barbieri¹

Kidney International (2008) 73, S52-S55; doi:10.1038/sj.ki.5002601

- Renal and Dialysis Unit, San Lazzaro Hospital Alba (CN), Italy
 - The effects of Incremental Dialysis (Incr_Dial) on RRF and dialytic adequacy were assessed in 11 patients treated with 2 CAPD exchanges per day for a total of 106 months (mean±sd 9.7±6.5), and then treated with three CAPD exchanges per day for an additional 105 months (9.4±8.3). Median actuarial survival on CAPD-2 before requiring additional dose of dialysis was 8.1 months.
 - All patients used 25mmol/l bicarbonate/15mmol/l lactate-buffered, glucose-based dialysis solutions (Physioneal; Baxter Healthcare, Rome, Italy, SpA).
 - 11 patients (males 7; mean age 66.1 \pm 10.3 years; BMI in males: 30.1 \pm 3.7; BMI in females: 27.4 \pm 2.7) had the following etiologies of ESRD :
 - 7 with diabetes, 2 with nephroangiosclerosis, 1 with glomerulonephritis, and 1 with adult polycystic kidney disease (APKD).

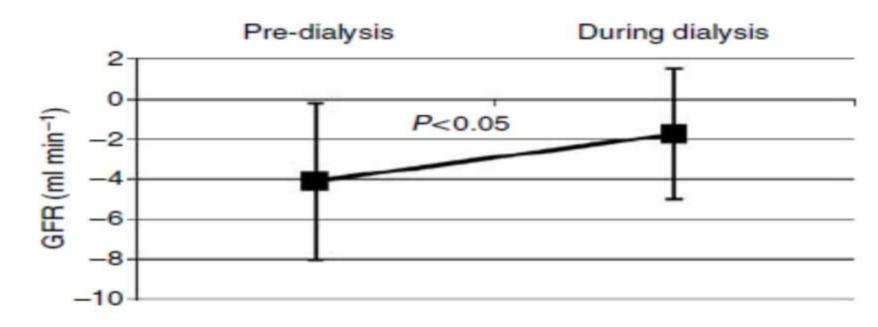


Figure 2 | Reduction in GFR from before to during incremental dialysis (11 pts treated with two and three exchanges per day CAPD)

Incr-PD showed a slowing in the loss of GFR compared to pre-dialysis period

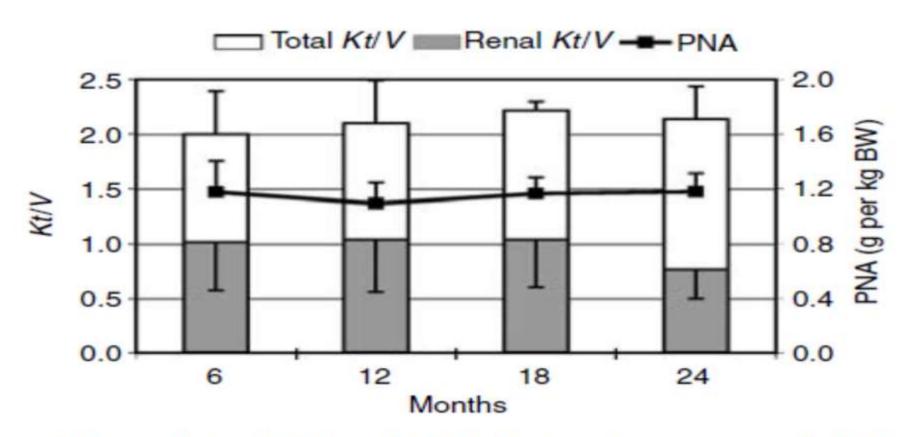
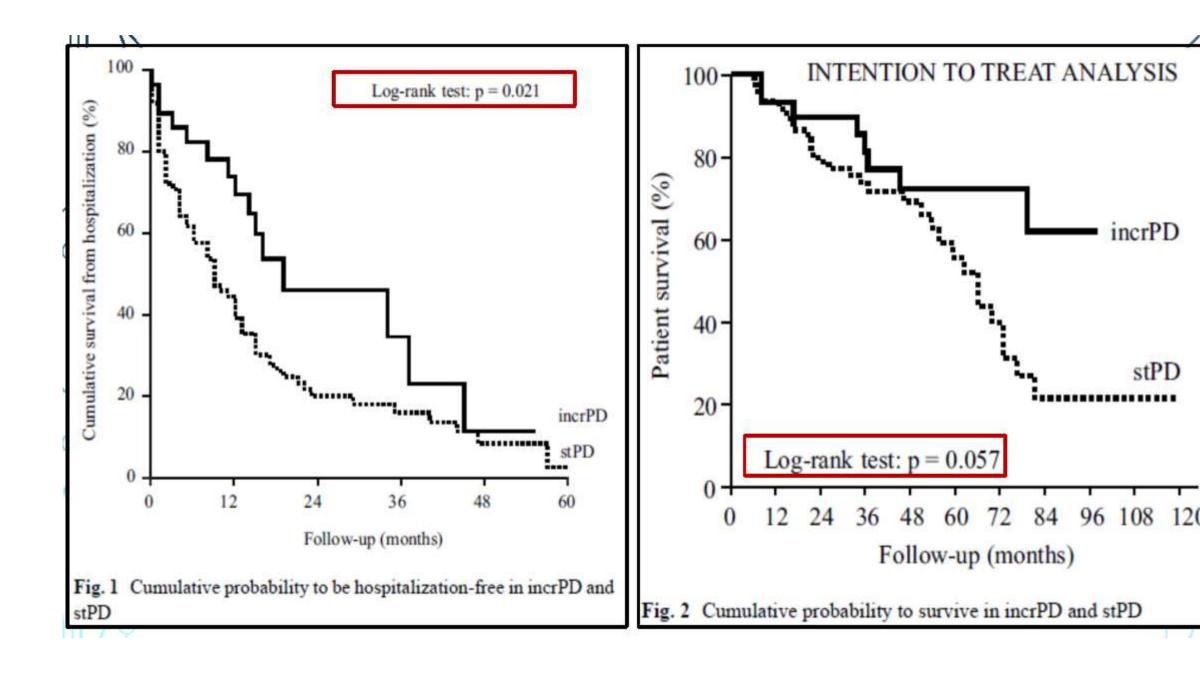


Figure 4 Trends in Kt/V and PNA during incremental dialysis (11 pts treated with two and three exchange CAPD).

ORIGINAL ARTICLE

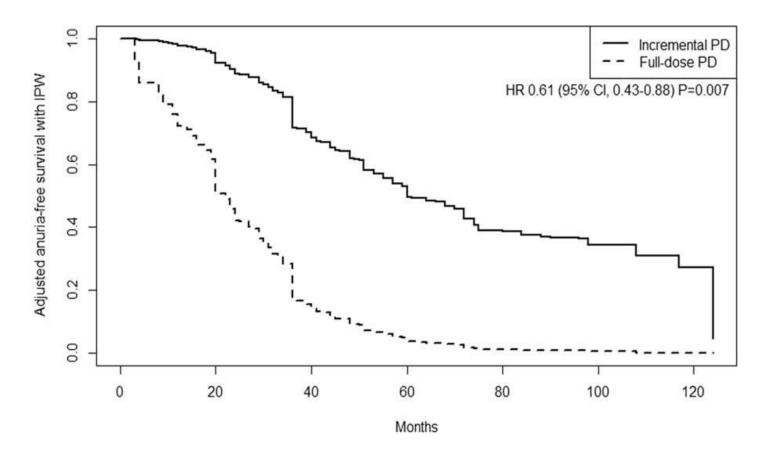

Incremental peritoneal dialysis: a 10 year single-centre experience

Massimo Sandrini¹ · Valerio Vizzardi¹ · Francesca Valerio¹ · Sara Ravera² · Luigi Manili¹ · Roberto Zubani^{1,2} · Bernardo J. A. Lucca² · Giovanni Cancarini^{1,2}

- Single-centre cohort study. Enrollment period: January 2002–December 2007; end of follow up:December 2012.
- Incremental dialysis dose (incrPD) was defined as one or two dwell times per day on CAPD.
- Standard dialysis dose (stPD) was defined as 3–5 dwell times per day, 7 days a week, for CAPD and seven nights a week for APD.
- 29 (28 %) were in the incrPD group and 76 (72 %) in the stPD group (total 105 patients)

	Initial data			6th month			End of treatment ^a			p value 6 vs. initial
	incrPD	stPD	P	incrPD	stPD	p	incrPD	stPD	р	incrPD
Number of patients	29	75		25	66		25	65		
twKt/V	2.08 ± 0.38	2.40 ± 0.58	0.008	2.13 ± 0.45	2.20 ± 0.43	0.527	1.77 ± 0.50	2.01 ± 0.35	0.007	0.672
twCrCl (1/w/1.73 m ²)	81±15	85±18	0.341	83 ± 19	77±20	0.192	66±27	62±21	0.460	0.485
Residual renal creatinine clearance	7.55 ± 1.94	7.36 ± 2.21	0.690	7.74±2.97	5.81 ± 2.72	0.004	5.39 ± 3.85	2.62±3.35	0.001	0.797
Peritoneal creatinine clearance	1.98±0.70	2.80 ± 0.93	< 0.001	2.02±0.63	3.22 ± 1.21	< 0.001	2.16 ± 0.68	4.08 ± 1.37	< 0.001	0.297
Renal + peritoneal creatinine clearance	9.53 ± 1.99	10.16 ± 2.52	0.231	9.77 ± 2.87	9.04 ± 2.63	0.255	7.55 ± 3.66	6.71 ± 2.82	0.246	0.600
Peritoneal contribution to total creatinine clearance (%)	21 ± 7	28±8	< 0.001	22 ± 10	38 ± 19	< 0.001	32 ± 13	70 ± 30	< 0.001	0.448
Residual urea renal clearance	4.55 ± 1.23	3.81 ± 1.35	0.014	4.63 ± 1.42	3.12 ± 1.67	< 0.001	3.27 ± 2.09	1.4 ± 1.85	< 0.001	0.778
Peritoneal urea clearance	2.44±0.78	4.50 ± 1.38	< 0.001	2.54 ± 0.79	4.68 ± 1.18	< 0.001	2.66 ± 0.81	5.66 ± 1.52	< 0.001	0.393
Renal + peritoneal urea clearance	6.99 ± 1.15	8.30 ± 1.93	< 0.001	7.17 ± 1.32	7.80 ± 1.54	0.073	5.94 ± 1.80	7.06 ± 1.42	0.246	0.490
Peritoneal contribution to total urea clearance (%)	35 ± 11	54±11	< 0.001	36 ± 11	61 ± 16	< 0.001	47±16	82±21	< 0.001	0.757
Creatinine renal clearance/urea renal clearance	1.70 ± 0.43	2.08 ± 0.92	0.007	1.69 ± 0.55	2.16 ± 1.24	0.007	1.65 ± 0.33	2.17 ± 1.58	0.051	0.678
Residual renal function	6.08 ± 1.47	5.61 ± 1.49	0.160	6.20 ± 2.02	4.48 ± 2.12	< 0.001	4.36 ± 2.96	2.03 ± 2.55	< 0.001	0.792

- The results of this study suggest a protective role of incrPD on RRF which was stable incrPD in the first 6 months whereas it significantly decreased in stPD.
- This stability could be the reason for a median duration of incrPD of 17 months, which co
 positively affect the patients' quality of life on PD due to a lesser burden of dialysis
 procedures.
- Patients on incrPD need a closer clinical follow-up to reduce the risk of under-dialysis.


SCIENTIFIC REPORTS

Article | OPEN | Published: 12 July 2019

Incremental Peritoneal Dialysis May be Beneficial for Preserving Residual Renal Function Compared to Full-dose Peritoneal Dialysis

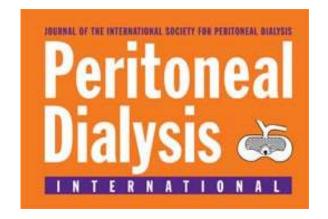
Yeonhee Lee, Sung Won Chung, Seokwoo Park, Hyunjin Ryu, Hajeong Lee, Dong Ki Kim, Kwon Wook Joo, Curie Ahn, Joongyub Lee & Kook-Hwan Oh

Scientific Reports 9, Article number: 10105 (2019) | Download Citation ±

- Single centre,, 2007-2015, follow up -6 years
- Retrospective, N=347 patients
- Excluded if urine <200mls/day at time initiate PD or previous HD
- Incr-PD (n=176): 1-2 PD bag exchange
- Full-PD (n=171): 3 or more PD bag exchange

Incr-PD associated with *significantly lower risk* of anuria

Similar peritonitis, technique survival, & mortality rates


Author, year	Period of time	Study design	No. pts on incrPD	incrPD schedule	Initial GFR (ml/ min)	Time on incrPD (patient-months)	Peritonitis rate (episode/patient- months)	Results/outcomes
Williams, 1999 [14] NA	NA	Pilot study	15	CAPD 1 dwell/day	9.8 ± 1.9	90	1/30	Adequacy (good) Hospitalization (3 admissions)
								Survival (patients and technique)
De Vecchi et al., 2000 [15] 1		Pilot prospective, not controlled	25	CAPD 1-2 dwells/ day	6-10	262	1/21	Good rehabilitation with incrPD
								Better quality of life with incrPD
								Adequacy (good)
								Exit-site infections (8 episodes)
								Complications
								Hospitalization (3 days/ year)
								Survival (patients and technique)
Burkart et al., 2000 [7]	ALTERNATION CO.	999 Non randomized, prospective	13	CAPD 1-3 dwells/ day	6.7 ± 2.4	159	1/53	Adequacy (good)
								Complications
								Survival (patients and technique)
Foggensteiner et al., 2002 [8]	1997–2000	Pilot, not random- ized, prospective	39	CAPD 1 dwell/day	10	422	1/30	Adequacy (good)
								Complications
								Hospitalization (3.6 days year)
								Survival (patients and technique)

1

Table 5 Papers published regarding clinical experiences in incrPD

Author, year	Period of time	Study design	No. pts on incrPD	incrPD schedule	Initial GFR (ml/ min)	Time on incrPD (patient-months)	Peritonitis rate (episode/patient- months)	Results/outcomes
Neri et al., 2003 [16]	2000-2001	Preliminary	5	APD 3-4	7–9	84	none	Adequacy
		experience		sessions/ week				Peritonitis
								Compliance
								Complications
							Survival (patients and technique)	
Viglino et al., 2008 [27] 2004-200	2004-2007	Retrospective	11	CAPD 2 dwells/day	7.3 ± 2.7	106	NA	Choice of dialysis modality
								RRF and adequacy (good)
								Technique survival
Domenici et al., 2011 [28]	2000-2008	Retrospective	17	?	6.9 ± 1.1	480	1/48	Reduced rate of loss of RRF
Jeloka et al., 2013 [29]	2006–2011	Retrospective	13	CAPD 1 dwell/day	7.8 ± 2.6	244	1/56	Adequacy (good)
Barràs Sans et al., 2016 [30]	2003-2012	Retrospective	46	CAPD 3 dwells/day	8.0 ± 3.2	1035	1/99	Reduced rate of loss of RRF
								Reduced dose of

erythropoietin

A large database report on PD patients across all membrane transport were used, and urea kinetic modelling determination of possible incremental regimens performed for an individual membrane type

Results:

Patient with significant RRF at the start of dialysis may not need the full dose dialysis regimen compared to long term dialysis patient who may be anuric

However, therapy need to also focus on ultrafiltration as UF maybe not be adequate despite fullfil the creatinine clearance target

Drawback of Incremental Dialysis

• It requires regular monitoring of residual renal function as its rate of loss is unpredictable

 Patient who starts incremental prescription may find it challenging to transition to a more intensive prescription

How to Prescribe Incremental CAPD Factors to Consider

- Patients lifestyle
- Patient body size
- Patient's RRF
- Peritoneal membrane Type
- Volume/Ultrafiltration Requirements
- Solute clearance Requirements

Who is A Candidate for Incremental PD

- By definition requires significant residual renal function (GFR > 5 mls/min)
 - Not appropriate for patients with no residual renal function
- Requires clinical judgement:
 - Patient body size and dialysis requirements
 - Other metabolic control: bicarbonate level, potassium, phosphate level
 - Ability to achieve adequate volume control
- Patients who adherent to treatment and willing to convert to FULL dose PD/intensification of treatment when RRF falls

Incremental dialysis in special population Heart Failure

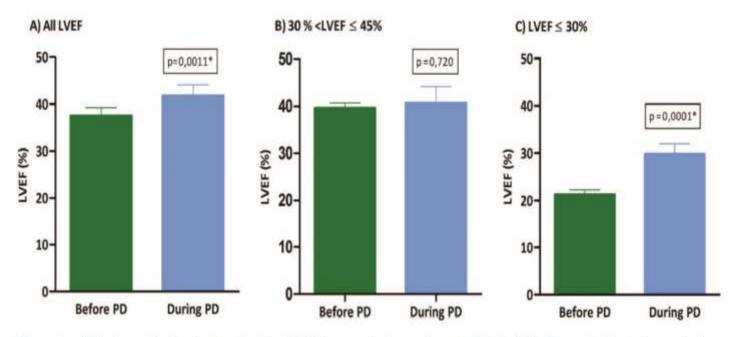
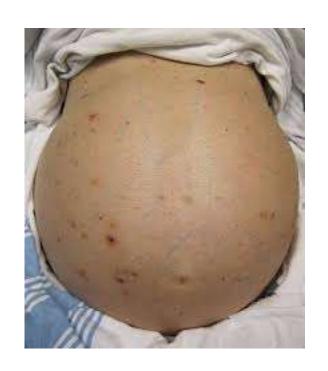



Figure 1 — (A) Left ventricular ejection fraction (LEVF) improved after peritoneal dialysis (PD) therapy in the study population. (B) Patients with better cardiac function did not have a major change in ejection fraction, (C) but those with a low ejection fraction experienced significant improvement.

In patient with cardiorenal syndrome, left EF improved significantly and 90% reduction in hospitalisation after PD initiation

Incremental dialysis in special population Chronic Liver Disease

- Require only 1-2 PD exchanges with good amount of ultrafiltration
- Difficult to control UF --→May decompensate haemodynamic status

Incremental Dialysis Prescription

• The dose of PD prescription can be individualized

Some patient can start 1 CAPD exchange per night

 If patient prefers dry abdomen at night, 2 daytime exchange may be performed

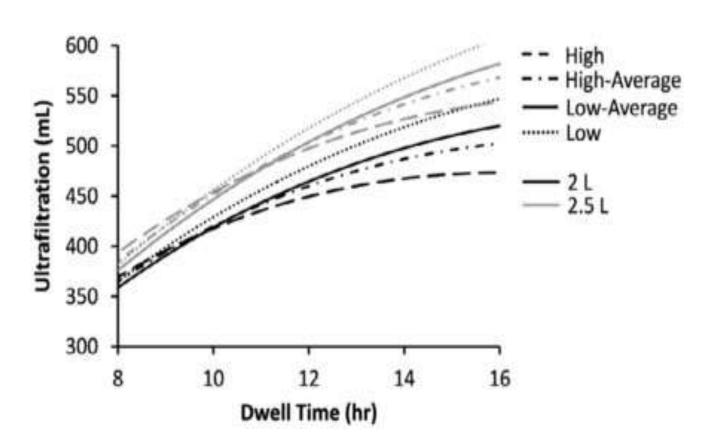
• 4 hours exchanges is recommended as opposed to 12 hours due to fluid absorption over long dwells

Impact of larger CAPD volumes vs 4th exchange on Kt/V

No. of exchanges	3	4	3
Kt/V	1.56	1.78	1.9
Dwell volume	2000	2000	2500

Incremental CAPD

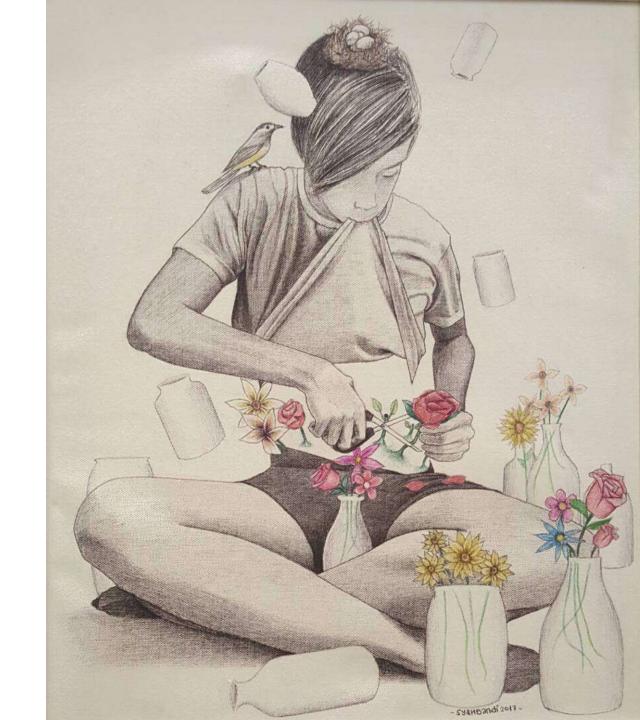
Single overnight exchange: Glucose or icodextrin Dry Night Partially Dry Day 6 am


Quast S at al. Kinatic Madaling of Incremental Ambulatory Paritancal Dialysis Exchanges. Parit Dial Int: inPress http://dx.doi.org/10.3747/pdi.2016.00055

SINGLE DAILY ICODEXTRIN EXCHANGE AS INITIAL AND SOLITARY THERAPY

Baris U. Agar and James A. Sloand

Global Science and Technology, Baxter Healthcare Corporation, Deerfield, IL, USA


- Utilised a 3-pore kinetic model to predict fluid and solute removal for different transport type
- Single daily icodextrin exchanges over 8-16 hours with 2-2.5L bag
- A single daily icodextrin tailored to augment urea, UF & Na removal.
- Maybe reasonable initial therapy for some incident ESRD

Summary

- No strict and fast rule on standard 4 bags PD exchanges....incremental dialysis is another approach
- Transition of a patient from CKD to dialysis in a timely manner is an art
 - Preservation of residual renal function
 - Allow initial PD initial incremental PD exchange
 - Change PD prescription in a stepwise manner
- Incremental PD exchange:
 - Reduce treatment burden, reduce cost, reduce glucose exposure and preserve residual renal function

THANK YOU FOR YOUR ATTENTION

